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Abstract

An iterative method is presented to solve the internal and external
camera calibration parameters, given model target points and their
images from one or more camera locations. The direct linear transform
formulation was used to obtain a guess for the iterative method, and
herein lies one of the strengths of the present method. In all test cases,
the method converged to the correct solution. In gencral, an over-
determined system of nonlinear equations is solved in the least-squares
sense. The iterative method presented is based on Newton-Raphson
for solving systems of nonlinear algebraic equations. The Jacobian is
analytically derived and the pseudo-inverse of the Jacobian is obtained
by singular value decomposition.
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1 Introduction

Certain experimental flow visualization techniques such as the Pressure Sen-
sitive Paint (PSP), Temperature Sensitive Paint and others involve taking
images of aircraft models in a wind tunnel. Typically, these images are
taken with one or more CCD cameras from different positions and orienta-
tions. These images are then subjected to image registration algorithms and
mapped onto the model geometry. Details about registration of PSP images
are discussed by Bell [2]. The mapping of the images to the model geome-
try, essentially a mapping relationship between model and image coordinate
systems, is expressed by the equation of photogrammetry (See Marzan and
Karara [6]). The relationship between the model and image coordinates re-
quires the determination of the camera calibration parameters. The camera
calibration paramters are: (a) external or extrinsic parameters which depend
upon the location and orientation of the camera, and (b) internal or intrinsic
parameters which are the camcra focal length, other lens parameters, dis-
tortion parameters, etc. The camera parameters which are relevant to this
report are discussed in more detail in Section 2. Typically, certain control
points on the model and their projected images are known a priori. Given the
coordinates of the control points, the equations of projective photogramme-
try, which are nonlinear equations, are solved to yield the camera orientation.
The most common method to solve the equations with an iterative solution
technique is termed bundle adjustment ([5, 4]). Another technique to ob-
tain the mapping between the image and model space is the Direct Linear
Transform (DLT) method [1].

In this report, a method to solve for the camera calibration parameters
is described. The solution method uses the DLT to obtain a guess for the
camera parameters, and then iteratively solves the nonlinear equations us-
ing a Newton method. The Jacobian for the Newton iterative technique is
obtained analytically, and the inverse (or rather pseudo-inverse) Jacobian is
obtained by singular value decomposition.



2 Solution Method

2.1 Equations of Photogrammetry

Let the model and image coordinate systems be denoted by (X,Y, Z) and
(z,y, 2), respectively. The origin of the image coordinate system is located
at (X¢,Ye, Zc) in model coordinate space. The orientation of the image
coordinate system with respect to the model system is given by a 3 x 3
rotation matrix R. The nine terms r;;,7 = 1,2,3 Jj = 1,2,3 of R are
not independent and can be reduced to three parameters by taking the Euler
angle approach, i.e., R is a combination of three separate rotations about the
three principal axes. Let the rotation about the z, y and z axes be denoted
by w, ¢, and &, respectively. Then

R = R, (k)Ry(¢)Ra(w) (1)
where each individual rotation matrix is given by
1 0 0 cos¢ 0 sing
R.(w)= |0 cosw —sinw |, Ry(¢)= 0 1 0 |,
0 sinw cosw —sing 0 cos¢

cosk —sink 0
R,(k)=| sink cosk 0O
0 0 1

One must be careful and note that the rotations do not commute. After
matrix multiplication, R is given by

cos pcosk — coswsink + sinwsin @ cos K sin wsin kK + cos wsin ¢ cos K
R=| cos¢sink coswcosk + sinwsin@sink —sinwcosk + coswsin ¢ sink
—sin ¢ sin w cos ¢ COS W COS ¢

Note that the rows (and columns) of the above matrix form orthogonal bases
vectors, a property which will be exploited later.

In actual practice, several target locations are identified on the model and
their coordinates are measured. The model is imaged by a CCD camera. For
an ideal camera, the projection of a model point (X, Y, Z) is (z,y) in image
coordinates. However, due to image distortion, the image of the model point
is measured at (z',y').



The relationship between model and image coordinates is expressed by
the projective equation of photogrammetry|6]

t—1z, = 2 —z,+ Az
_ _f’l‘u(X - Xc) +7‘12(Y— Yc) +T13(Z— Zc)
B ra(X — Xe) + (Y = Ye) +733(Z — Z¢)’
Y=Y = ¥ —yp+Ay
_ T21(X—Xc)+7"22(Y—-)”C)+T‘23(Z—Zc) (2)
ra (X — X¢) +rao(Y — Yo) +133(Z — Z¢)

In equation (2) Az, Ay are the terms which model the effects of symmet-
rical and asymmetrical lens distortion; z,,y, are the image coordinates of
the principal point; and r;; is the ¢ th row and j th column element of R;
and f is the focal length of the camera. A commonly used sct of functions
for Axr and Ay is

Ar = j(kl’/z + k2T4 + k3’l‘6) -+ Yyl (’I'2 + 25‘2) + 2p2f:lj,
Ay = Glkir? + kort + kgr®) 4+ 20127 + p2(r® + 20°) + 1T + a2f,  (3)

where T = o' — 1, § = ¥ — ¥p, 7> = Z° + 7% and k;, p; and a; Tep-
resent radial, lens decentering, and affinity distortion terms, respectively.
The six-tuple (X¢, Yo, Zc,w, ¢, &) which gives the position and orientation
of the camera contains the external calibration parameters; while the ten-
tuple (ki, kg, k3, 1, D2, @1, G, Tp, Yp, f) Tepresenting the radial, lens decenter-
ing, affinity distortion terms, the principal point, and the focal length con-
tains the internal calibration parameters.

Let the number of model target points be m. A given camera produces
images of the model from n different locations. For each camera location, the
image coordinates of a subset of the m model points may be measured. Let
the number of measured image points for the ¢ th camera location be m; < m.
The total number of unknowns are 6n + 10 where 6n are the six external
calibration parameters for n camera locations and 10 internal calibration
parameters. The total number of equations available is 237, m; < 2nm.
For all the test cases discussed later in this report, we encounter an over-
determined system, i.e., 2%, m; > 6n + 10.

2.2 Solution Method

The over-determined system of equations governing the internal and external
calibration parameters is solved in a least-squares sense as follows. We first



recast the equations in a convenient form. Define a vector of unknowns as
€ = (X, @1, Ao, ®2, 0 X, ¥)T (4)

where Xo; = (Xcy, Yo, Zc;) and ®; = (wi, ¢4, %) are the camera external
calibration parameters for the i th camera location; and

U = (ky, ko, k3, P1, P2, 1, Gz, Tp, Yp, [) 1s the vector of the camera internal
calibration parameters. Then rewrite the equations as

FE) = Fi(€) = (2} + Azy — mp) (X — Xey) - Ta + f(X) — Xci) F1i=0
Gi(€) = (y; + Ay; — ) (X — Xeoi) - a5+ (X — Xey) T = 0(

)

In equation (5), { =m; 1 +J, (me=0);5=1,2,---my; and t = 1,2,---m,
with the index j varying faster than index i. Furthermore, X; is the position
vector of the j th target point, i.e., X; = (X}, Y], Z;); and &, is the position
vector of the i th camera, ie., Xo; = (Xcy, Yo, Z¢i). The unit vectors
fy,i correspond to the k th column vector of the rotation matrix R and are
functions of the i th camera Euler angles (w;, ¢, Ki)-

The above system of nonlinear equations is solved in an iterative fashion
as described below. Assume the solution vector £ is known at iteration 'k’.
The left-hand side of equation (5) may be expressed as a truncated Taylor
series at iteration k + 1.

E+1 k oF\"* k '

P =m0+ () A ©)
where A&k = ¢k+1 — €5 Tn the above equation, F is a column vector with
2¥""m, elements, the Jacobian 0F /¢ is a matrix with 237 m; rows and
(6n + 10) columns, and A is a column vector with (6n + 10) elements.
Following the Newton-Raphson iterative technique, we set F¥+l = 0 and
solve for €571 as

-1
oF\*
k+1 _ ¢k il fk 7
e = E(ag)} @, )
where the term [J~! is the inverse (pseudo-inverse) of the Jacobian matrix
if 25" m; = 6n+ 10, (2X7m; > 6n 4 10). The elements of the Jacobian
matrix are analytically determined (see Appendix A for details). At each



iteration, we solve a system of linear equations. For over- determined systems
(2 37 m; > 6n+10) the linear system is solved in the least-squares sense. The
above iterative procedure is terminated upon convergence. It is well known
that the standard Newton-Raphson method converges if the initial guess is
sufficiently close to the solution. The initial guess for the above procedure is
discussed in detail in section 2.3.

2.2.1 Pseudo-inverse and Singular Value Decomposition

For an over-determined system (237m; > 6n + 10), the Jacobian matrix
is not square. A preferred method for solving linear least-squares problems
is singular value decomposition (SVD)[9]. In general, any M x N matrix A
may be written as the product of an M x N column- orthogonal matrix U,
an N x N diagonal matrix W, and the transpose of an N x N orthogonal
matrix V. The system of equations A.z = b is solved in the least-squares
sense by finding z which minimizes x* = ||A-z — bl|. The solution z is given
by

=V [diag(1/w;)]-UT - b, (8)

where w; is the jth diagonal clement of the diagonal matrix W and are called
the singular values of A. The product of the three matrices,

V - [diag(1/w;)] - U, in the equation above is the pseudo-inverse of A. In
our case, the pseudo-inverse of the Jacobian is calculated using SVD, and
the solution vector at £€¥*1 is calculated in the least-squares sense as outhned
above. An added benefit of using singular value decomposition is that the
above procedure works even when the Jacobian is singular or ill-conditioned.
We compute the condition number (defined as the ratio of the largest to the
smallest singular value) of the Jacobian matrix. If the inverse of the condition
number is smaller than 1077, all singular values which are smaller than 1077
times the maximum singular value are set to zero. This prevents round-off
error from contaminating the solution. In our case, we choose p = 12 because
our computations are done using double precision arithmetic.

2.2.2 Convergence Criteria

The convergence criteria to terminate the iterative solution is

[P - FE < 6 (9)



where € is a “small” number determined by the user. Another alternative is
to examine the change in the Ly, norm of the solution vector AEF. For both
criteria, convergence is achieved in 10 — 20 iterations for € = 1078 In no
test case did we need to iterate more than 20 times. Convergence was not
quadratic, as one would expect for a standard Newton-Raphson technique.
Perhaps this is not surprising because we are solving the equations in a
least-squares sense, and in some cases the Jacobian matrix may have large
condition numbers.

2.2.3 Gimbal Lock

We now focus attention on the case when ¢ = /2. The rotation matrix R
for ¢ = /2 becomes

0 sin(w—k) cos{w—k)
R=| 0 cos(w—k) —sin(w—x) |. (10)
-1 0 0

This shows that the solution only depends upon the difference of w and «,
i.e., the number of independent unknowns reduces by one. This is called
“Gimbal Lock”. Further discussion of this issue is given in Section 2.4.

2.3 Initial Guess

For a good optical system that does not suffer from optical distortion, the
crror terms in equation (2) may be neglected. Some algebraic manipula-
tion leads to the following form, called the direct linear transform (DLT)
formulation [1],

_ LiX+ LY+ L3Z+L, Y- LiX + LY + L;Z + Lg (1)
T T I X ALY +LuZ YT L X+ LY +LuZ
where L, ---L;, are called the DLT coefficients. Given the model target
points and their images, one solves for the DLT coefficients using the solution

procedure given in Reference [8]. The DLT coefficients for n camera locations
are obtained.

2.3.1 Estimate of Camera Position

In equation (2) the numerator and denominator are zero when X = X¢,Y =
Yo, Z = Z¢. This implies that the camera position vector Xz may be deter-



mined by solving the following linear system of equations:
L Xc+ LYo + LyZo+Ly = 0,

L5XC + L6YC + L7ZC + Lg = 0,
LoXc + LYo + L11 Z¢ + 1 0. (12)

2.3.2 Estimate of Camera Focal Length

Recall that one of the internal calibration parameters to be determined is
the camera focal length f. For convenience we define some new variables as
follows:

Ly ot o Ly T L; T13

&= Ly~ fr31 &= o f'l‘31’ £ = L, f7~31

m = L, _ f7"11 7 L, _ T12 L; _ 713

1= 7 = —J 2= 7 = —J > =7 — TJ

Lo 732 Ly r3 Lo 732

Ll T LQ T2 L3 T3
=——=—-f— == =—-f— = —=—f—. 13
“ Ly fT33 & Ly f7'33 G Ly 733 (13)

Now we use the fact that the row and column vectors of R are orthogonal
unit vectors. It can then be trivially shown that

1 1 1 1

FretETE : (4
where € = €2 + €2 + £2 and so on. The focal length is then calculated
by taking the positive square root of f2. In the estimation of the focal
length, an alternative is to use Ly, Ly, Lg and ra1, T2, 733 instead of L, Lo, L3,
11, T12, T13, respectively, in equation (13). Finally, because we have n camera
locations, we calculate n sets of DLT coefficients and n focal lengths. We
choose the starting point of the focal length of the camera as the average of
the n estimated focal lengths.

2.3.3 Estimate of Camera Orientation

We begin by using the last row of R, the calculated DLT coefficients, and
the estimated focal length to estimate the orientation Euler angles (w, ¢, k)
for each camera location. We first estimate ¢ by the following relation

f2

E (15)

sin? ¢ = 7z, =
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We take the positive squarc root and take the principal value for ¢. The
other two angles are estimated by using the following equations:
f2 L] sin ¢

———, COSK = ——7—. 16
n? cos? ¢ " fLgcos ¢ (16)
For the rare case of ¢ = /2, we simply set ¢ = 0.957/2. This is justified
because we are simply interested in an initial guess for ¢. This eliminates
the possibility that the denominator in equation (16) is zero. Note that
as calculated above ¢ € [0,7/2], w € [0,7/2] and « € [0,7]. Using these
calculated angles, one may recalculate the focal length using the following
relations:

sin? w =

IR P R S 7
T Tio T3’ ruXc +112Ye + 113 Zc’
L L L —L
R = L e ,an
To1 T22 T23 raXe + 122Ye + TesZc

where v = 73 X¢ + r32Ye + r33Z¢c. The estimate of the angles are refined
by using —0,7 £ 6,0 — 7, (6 = w, ¢, k), to calculate R which is then used
in equation (17). That combination of angles which gives a positive focal
length for all the above eight calculations in equation (17) is taken as the
initial guess of the orientation.

2.4 Test Cases and Uniqueness of Solution

For nonzero Az and Ay in equation (2), there are a multiplicity of solutions.
It is unclear how many solutions are actually present. Contrived tests were
carried out with known camera calibration parameters. When the above
procedure to obtain an initial guess of the solution is adopted, the solution
obtained was always the correct one. For some contrived tests, if the so-
lution vector was initialized to arbitrary quantities, the converged solution
was not the correct one. In some cases, the solution converged to a very
small focal length with large distortion parameters. It is recommended that
the image points be recomputed once the camera calibration parameters are
determined. Then a calculation of the root-mean-square error between the
computed and the given image point coordinates is performed. For model
and target points provided by Bell [3] for the B-70 and Boeing airplane test
data, the root-mean-square error was always less than one pixel.
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If Az = Ay = 0 and if the focal length is provided, then the above
iterative procedure converges to a unique solution. Of course, the solution
for the orientation angles is unique up to an additive constant. It is trivial
to ensure that the angles always lie between —27 and 27.

For cases of Gimbal lock, tests indicated that the solution converges to
arbitrary values of w and &, while the correct difference between these two
angles is always attained. Thus, nothing special is done for the case when ¢ =
7/2. The reader is simply cautioned that the difference w—x is important and
not the individual values. Because we are eventually interested in mapping
between the image and model spaces, the mapping obtained even in the case
when we have gimbal lock is correct.

Finally, we note that the above solution procedure was coded into a C-
program library which may be obtained by sending electronic mail to the
author. The library was made flexible enough so that, in the event the
code converges to an undesirable solution (which is discerned quickly by an
examination of the root-mean-square error between measured and calculated
image point locations), the user may specify an initial guess for the solution.
We now present two specific sample calculations. The data used in these
sample calculations is presented in tabular form, and the interested reader
may obtain the numerical values by sending electronic mail to the author.

2.4.1 Example 1: Joukowski Wing Dataset

A dataset was artificially generated to mimic the situation encountered in
pressure sensitive paint cxperiments. Basically, we created a wing using sev-
eral two-dimensional cross sections, each of which was a Joukowski airfoil [7].
Then we sprinkled 46 target control points in a random fashion on this wing.
A camera was placed at four different stations. The resulting four images,
each of size 512 x 512 pixels, are shown in Figure 1. The target points, and
their locations in the images are given in Table (1), and Tables (2)-(5), re-
spectively. Note that the image coordinates, in pixels, are usually scaled by
a certain factor in order to operate in the same units as the model. In this
example, the scale factor was 1/512. The above method was used to deter-
mine the camera calibration parameters and the results are given in Table
(6). In this contrived example, in 7 iterations |F*! — F¥| = 5.7 x 107® and
in 8 iterations |F**! — F¥| = 1.3 x 1075, Furthermore, in this example in
8 iterations we also achieved |F**!| < 107'5. Another point to note in this
example, is that, for station numbered '1’, the orientation angle ¢ = 90° and
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therefore we have a gimbal lock. The images were generated using w = 0°
and x = 50°. The solution obtained shows w = 1.381° and « = 51.381° so
that the difference between these angles is still 50° as it should be for the
gimbal lock case. The internal parameters are very small as they should be
in this example.

2.4.2 Example 2: Boeing Airplane Dataset

Data in the form of target point locations and their images was provided by
Bell [3] for a Boeing airplane. The target points are given in Table (7). Of
course, the units are normalized so that they do not correspond to the real
dimensions of the actual model in the experiment. Three images, each of size
512x 1024 pixels, were provided. The coordinates of the target points for each
of the three images are given in Tables (8)-(10). The image coordinates were
scaled by a factor 9.4488 x 107*. The above method was used to determine
the camera calibration parameters, and the results are given in Table (11).
In this example, convergence is achieved in 10 iterations when we obtain
| FE+1 — F*| = 3.66 x107°. The L norm of F settled down to 0.051818 after
6 iterations. Also shown in Tables (8)-(10) are the calculated coordinates of
the target points in the images using equation (2). The root-mean-square
error between the calculated and the measured locations of the image points
is less than 0.2 pixels.

3 Conclusion

In this report, we have presented an iterative method to solve the internal
and external camera calibration parameters given model target points and
their images from one or more camera locations. The direct linear transform
formulation was used to obtain a guess for the iterative method, and herein
lies one of the strengths of the present method. In all test cases, the method
gave the correct solution without user intervention in selecting a good initial
guess. Sufficient details are given in the report, including detailed analytical
expressions for the Jacobian, to enable one to write a computer program.
Alternatively, a C-library which uses the present method to determine the
camera calibration parameters may be obtained by sending electronic mail
to the author.
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Figure 1: Images corresponding to the four different camera locations. The
black dots on the images correspond to the target points. The color corre-
sponds to the cocfficient of pressure for the wing with red (blue) correspond-
ing to high (low) values.
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4 Appendix A: Derivation of the Jacobian

The Jacobian matrix in equation (6) is given by

¢ - R
dXc1 0%y EXg
0 0 0 0 - = & or
o0 0 0 A R

Each row of the Jacobian matrix consists of 6n + 10 entries, of which 6n — 6
entries are zero. The derivatives of F' (and G) with respect to AX¢;, ®; and
U are row vectors with 3, 3, and 10 elements, respectively. These derivatives
are given below.

oF . .
6—XC— = —(z—x,)f5— 7y,
oG . .
T ~(y — yp)Ta — fra (19)
or Or3 oy
3 = ($‘$p)(X—XC)'8—(I,+f(X—XC)'*66’
oG 073 079
3% - (v — yp) (X — Xc) 55 T f(X = &c) 35 (20)
where
9f 0 —sin g cosk —cos¢sink
Eé: sinwsink + coswsin g cos K SiNwcosPcosk — COSWCOSK — Sinwsingsink |,

coswsink — sinwsin dcosk coswcospcosk  sinwcosk — coswsingsink
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57 0 —sin¢sink coS P Ccos K
5% = —sinwcosk + coswsingsink sinwcos¢sink —coswsink +sinwsin@cosk |,
—CcoSwcecosk —sinwsin@gsink coswcos¢sinkg  sinwsin k£ + coswsin ¢ cos k
. 0 —cos¢ 0
87'3 . .
55 = COS W COS ¢ —sinwsing 0 |.
coswcosdsink —coswsing 0

The derivatives with respect to the internal calibration parameters are given
below:

oF oF oF

. = (X — X¢) 73 2r?, Ok (X — X¢) - 75 2, EPS = (X — Xc) - 15 21°,
oF oF
— = (X =X) -3 (rP+27%), —— = (X — Xp) - 743 227,
51 ( c) 3 ( ) o ( c) - f3 22y
oF oF
8—04 - 07 6—0,2 - 01
oF 0Azx
— = —(X=-X)-75 |1~
0z, ( c) T3 ( 0z, ) ’
oF 0Azx
— = (X=-X)-7
By,, ( c) 73 8yp »
oF .
W = (X =dg)- 1, (21)
and
oG . oG . oG I
a—kl = (X-XC).r3 y7~27 a—kZ:(X—Xc)'T;;yT‘I, —6—12—3-=(X—Xc)'7"3yrﬁ,
G = (X Xo) ot (P 2P), 5 = (X = Xo)fa 2,
oG . _  0G N
a—al = (X——Xc)'r;gll, a—azz(X_XC)'TSy:
oG . 0Ay
oz, (X = Xc) - 7y 5z,
G 0Ay
— = —(X=X)-7 [1—
OYp ( o) s ( Oyp ),
oG .
= (X — Xc) < T (22)

of
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where

0Az 2 4y..2 =2 2 4 P =

o — —(kl + kor® + k31 )7‘ — 2 (kl + 2kor® + 3k3T ) —6p1Z — 2p2y7
I4

oA

ayx = —22(ky + 2kyr? + 3ksr*) — 2p1§ — 2po7, (23)
4

oA

axy = —25§(ky + 2kyr? + 3kst4) — 2p17 — 2po% — ay,
4

Ay 2 4,2 —2 2 4 = _

o = —(ky + ko + kar*)r? — 2% (ky + 2kar® 4+ 3ksr*) — 2p1 T — 6pay — aq.
P
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Table 1: Target locations for the Joukowski wing dataset (Example 1).

No. Target Locations No. Target Locations
X Y Z X X Z

1 | 3.205 |-0.097 | -12.750 || 24 |-2.144 | 0.062 | -6.750
2 | 2289 [-0.107 | -3.375 || 25 | -2.054 | 0.124 | -9.000
3 12099 |-0.135| -1.875 || 26 |-1.899 | 0.224 | -11.625
4 | 2.134 |-0.225| -3.375 || 27 |-1.614 | 0.332 | -12.375
o | 2.925 | -0.651 | -14.250 || 28 | -1.121 | 0.211 | -1.875
6 | 2.397 | -0.587 | -10.125 || 29 | -0.897 | 0.352 | -5.250
7 | 1.505 | -0.190 | -0.750 | 30 | -0.587 | 0.586 | -10.125
8 | 1.829 [ -0.589 | -8.250 || 31 |-0.197 | 0.824 | -13.875
9 | 1.225 {-0.291 | -2.625 || 32 | 0.192 | 0.951 | -14.625
10 | 1.095 | -0.386 | -4.500 | 33 | 0.339 | 0.711 | -7.875
11 | 0.648 | -0.162 | -1.125 || 34 | 0.674 | 0.789 | -8.625
12 | 0.910 | -0.781 | -13.125 || 35 | 1.124 | 0.966 | -11.625
13 | -0.304 | -0.334 | -8.250 || 36 | 1.280 | 0.840 | -9.000
14 | -1.007 | -0.315 | -12.750 || 37 | 1.030 | 0.416 | -1.125
15 |-1.356 | -0.170 | -10.500 || 38 | 2.097 | 0.990 | -13.125
16 | -1.558 | -0.022 | -4.875 || 39 | 2.090 | 0.779 | -9.750
17 | -2.038 | -0.062 | -11.625 || 40 | 2.391 | 0.754 | -10.875
18 | -1.827 | 0.019 | -1.125 || 41 | 2.839 | 0.766 | -13.875
19 | -2.035 | 0.011 | -2.625 || 42 | 2.131 | 0.352 | -4.125
20 |-2.222 | 0.005 | -4.125 | 43 | 1.939 | 0.185 | -0.750
21 [-2.098 | 0.001 | -1.500 || 44 | 3.168 | 0.348 | -13.125
22 |-2.354 | 0.001 | -5.250 | 45 | 2.795 | 0.162 | -8.625
23 [-2.454 | 0.009 | -7.500 || 46 | 2.999 | 0.048 | -10.500

18
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Table 2: Coordinates of target points in the image collected by the camera
at station 1 for the Joukowski wing dataset (Example 1). The image is of
size 512 x 512, and the image coordinates are in pixels.

No. | Image Coordinates | No. | Image Coordinates
X y | ox y
1 | 190.662 | 146.457 || 24 | 160.456 | 224.876
2 107.044 | 256.018 || 25 | 176.300 | 204.277
3 | 95.147 | 272707 || 26 | 194.569 | 179.656
4 |109.632 | 257.106 | 27 | 198.479 | 171.013
5 | 212,553 | 136.367 || 28 | 116.458 | 267.469
6 | 174.584 | 185.310 | 29 | 140.216 | 234.806
7 | 90.885 | 284.589 | 30 | 175.208 | 186.178
8 1160.174 | 207.777 || 31 | 201.894 | 146.481

9 [ 110.841 | 265472 || 32 | 205.808 | 135.855
10 | 129.142 | 246.778 || 33 | 151.325 | 204.287
11 | 101.105 | 279.287 || 34 | 155.103 | 195.114
12 | 208.778 | 161.670 || 35 | 177.012 | 160.952
13 | 167.772 | 210.771 || 36 | 154.601 | 188.768
14 | 205.799 | 170.129 || 37 | 92.015 | 274.746
15 | 187.955 | 191.079 | 38 | 186.246 | 139.137
16 | 144.309 | 241.727 || 39 | 157.572 | 178.074
17 1 197.497 | 182.269 || 40 | 166.679 | 164.445
18 | 117.047 | 275.284 || 41 | 192.987 | 127.665
19 | 129.630 | 261.814 || 42 | 110.244 | 243.567
20 | 141.855 | 248.571 || 43 | 82.843 | 281.860
21 | 121.703 | 271.856 || 44 | 189.287 | 137.977
22 | 150.844 | 238.776 || 45 | 149.809 | 193.604
23 | 167.733 | 219.143 || 46 | 168.010 | 172.339
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Table 3: Coordinates of target points in the image collected by the camera
at station 2 for the Joukowski wing dataset (Example 1). The image is of
size 512 x 512, and the image coordinates are in pixels.

No. | Image Coordinates | No. | Image Coordinates
X y X y
1 | 273.318 | 266.992 || 24 | 196.820 | 341.550
2 | 253.257 | 393.849 | 25 | 201.420 | 310.587
3 | 249.113 | 416.495 | 26 | 207.185 | 276.344
4 |251.268 | 394.358 | 27 | 211.936 | 267.293
5 |272.006 | 246.787 || 28 | 204.016 | 412.877
6 | 261.764 | 299.804 | 29 | 212.029 | 362.831
7 1 239.547 | 434.061 || 30 | 222.415 | 297.045
8 | 252.447 | 324.952 || 31 | 231.513 | 251418
0 |237.834 | 405.564 | 32 | 236.943 | 243.310
10 | 238.230 | 377.750 || 33 | 231.682 | 327.042
11 | 227.792 | 427.650 || 34 | 236.750 | 317.417
12 | 245.354 | 258.497 || 35 | 245.249 | 280.090
13 | 223.538 | 322.788 || 36 | 244.725 | 313.051
14 | 219.798 | 262.095 || 37 | 233.126 | 423.883
15 | 212.420 | 291.232 || 38 | 258.276 | 263.039
16 | 201.994 | 369.081 || 39 | 255.563 | 304.222
17 | 205.038 | 275.874 || 40 | 260.278 | 290.383
18 | 192.432 | 425.380 || 41 | 268.050 | 254.517
19 | 191.853 | 402.181 || 42 | 251.325 | 380.749
20 | 191.578 | 379.572 || 43 | 245.391 | 431.519
21 | 189.092 | 419.533 || 44 | 272.227 | 263.058
22 | 191.506 | 363.001 || 45 | 264.379 | 319.792
23 | 193.621 | 330.905 | 46 | 268.712 | 295.485
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Table 4: Coordinates of target points in the image collected by the camera
at station 3 for the Joukowski wing dataset (Example 1). The image is of
size 512 x 512, and the image coordinates are in pixels.

Z
©

Image Coordinates | No. | Image Coordinates
X y x y
337.370 | 315.663 | 24 | 275.158 | 235.344
338.494 | 193.709 || 25 | 274.256 | 263.767
338.016 | 172.490 | 26 | 273.800 | 296.027
336.123 | 193.743 || 27 | 276.530 | 305.758
331.017 | 329.827 || 28 | 293.282 | 170.472
329.749 | 280.974 || 29 | 292.566 | 216.949
331.159 | 156.270 || 30 | 291.402 | 280.842
324.820 | 257.256 || 31 | 292.451 | 328.188
324.480 | 182.952 || 32 | 296.587 | 338.494
320.130 | 208.458 || 33 | 306.162 | 253.432
318.596 | 161.344 || 34 | 309.823 | 263.852
307.405 | 313.285 || 35 | 312.269 | 303.571
297.457 | 255.452 || 36 | 317.657 | 269.655
284.349 | 308.228 | 37 | 324.532 | 159.827
281.972 | 281.989 | 38 | 323.479 | 323.971
284.542 | 211.460 || 39 | 327.750 | 280.318
272.525 | 294.754 | 40 | 330.297 | 295.116
284.647 | 160.137 | 41 | 332.208 | 333.185
280.418 | 180.911 42 | 335.878 | 203.741
276.576 | 201.061 43 | 338.005 | 155.220
280.674 | 165.361 | 44 | 337.050 | 322.356
273.887 | 215.788 | 45 | 338.187 | 264.851
270.691 | 244.470 | 46 | 338.046 | 288.547

B DD B DD — = b b e e e e e
W R SO -1 U WER mo ©0TS O R WN




22

Table 5: Coordinates of target points in the image collected by the camera
at station 4 for the Joukowski wing dataset (Example 1). The image is of
size 512 x 512, and the image coordinates are in pixels.

Z
e

Image Coordinates | No. | Image Coordinates
X y X y
337.370 | 315.663 || 24 | 275.158 | 235.344
338.494 | 193.709 || 25 | 274.256 | 263.767
338.016 | 172.490 || 26 | 273.800 | 296.027
336.123 | 193.743 || 27 | 276.530 | 305.758
331.017 | 329.827 || 28 | 293.282 | 170.472
329.749 | 280.974 || 29 | 292.566 | 216.949
331.159 | 156.270 || 30 | 291.402 | 280.842
324.820 | 257.256 || 31 | 292.451 | 328.188
324.480 | 182.952 || 32 | 296.587 | 338.494
320.130 | 208.458 | 33 | 306.162 | 253.432
318.596 | 161.344 || 34 | 309.823 | 263.852
307.405 | 313.285 || 35 | 312.269 | 303.571
297.457 | 255.452 || 36 | 317.657 | 269.655
284.349 | 308.228 || 37 | 324.532 | 159.827
281.972 | 281.989 || 38 | 323.479 | 323.971
284.542 | 211.460 | 39 | 327.750 | 280.318
272.525 | 294.754 | 40 | 330.297 | 295.116
284.647 | 160.137 || 41 | 332.208 | 333.185
280.418 | 180.911 42 | 335.878 | 203.741
276.576 | 201.061 43 | 338.005 | 155.220
280.674 | 165.361 | 44 | 337.050 | 322.356
273.887 | 215.788 | 45 | 338.187 | 264.851
270.691 | 244.470 || 46 | 338.046 | 288.547

B B DD DD bt ek pad e e et e bt ek e
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Table 6: Camera parameters for the Joukowski wing dataset (Example 1).
Note that the RMS error and the principal locations (z,,y,) are in pixels,
while the orientation angles are in degrees.

Parameter { Station 1 | Station 2 | Station 3 | Station 4
Xc 20.000 0.000 0.000 -10.000
Yo -8.000 -20.000 20.000 10.000
Zc -10.000 -10.000 -5.000 0.000
w 1.381 -80.000 80.000 60.000
¢ 90.000 5.000 -10.000 30.000
K 51.381 5.000 5.000 45.000
k1 -4.053E-7 | -4.053E-7 | -4.053E-7 | -4.053E-7
ko -2.179E-6 | -2.179E-6 | -2.179E-6 | -2.179E-6
k3 4.107E-5 | 4.107E-5 | 4.107E-5> | 4.107E-5
ol 1.052E-9 | 1.052E-9 | 1.052E-9 | 1.052E-9
D2 8.850E-8 | 8.859E-8 | 8.859E-8 | 8.859E-8
ax -2.334E-9 | -2.334E-9 | -2.334E-9 | -2.334E-9
as -6.064E-9 | -6.064E-9 | -6.064E-9 | -6.064E-9
Tp 1.000 1.000 1.000 1.000
Yp 1.000 1.000 1.000 1.000
f 0.500 0.500 0.500 0.500
z RMS Error | 5.040E-6 | 3.470E-06 | 4.070E-06 | 3.535E-06
y RMS Error | 3.866E-6 | 2.788E-06 | 2.388E-06 | 6.169E-06




Table 7: Target locations for a Boeing airplane dataset (example 2).

Z
©

Target locations

X

Y

Z

CO =~ O Ut i W b =

= D e e e e
QO =IO OV i W N =O

1607.182
2032.488
2034.920
2290.974
2289.736
2456.156
2573.540
2577.158
2820.132
2783.998
2717.762
2874.836
1903.644
2088.480
2178.304
2426.106
2645.676
2869.044

115.070
97.430
262.636
93.098
336.418
235.920
92.632
422.288
208.338
373.076
551.874
741.880
245.944
322.896
350.492
435.612
604.052
568.930

227.882
231.272
221.354
231.192
219.346
226.210
224.990
220.214
215.554
219.732
221.234
221.912
213.790
197.480
198.340
198.062
202.698
213.628
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Table 8 Measured and calculated image locations, in pixels, for camera at

station 1 for the Boeing dataset (Example 2).

Z,
e

Measured

Calculated

T

y

Teale

Yealc

GO ~J O O o QW N

DO e e e
Y 1 Oy OV QN = O

462.362
472.600
373.792
473.892
331.696
389.500
471.167
285.167
403.333
313.056
216.000
120.611
383.222
339.267
323.783
277.933
189.500
210.500

103.700
367.667
370.304
521.270
519.208
614.500
680.571
677.500
807.333
786.139
748.083
822.389
291.444
401.867
454.317
592.467
707.500
822.500

462.369
472.791
373.621
473.837
331.713
389.474
470.999
285.035
403.382
313.192
216.262
120.641
383.156
323.947
339.303
277.922
189.416
210.319

103.701
367.531
370.230
521.459
519.089
614.347
680.585
677.350
807.255
786.158
748.666
822.225
291.502
454.114
402.114
592.604
707.300
822.526
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Table 9: Measured and calculated image locations, in pixels, for camera at

station 2 for the Boeing dataset (Example 2).

No. Measured Calculated
T Y Tealc Yeale
1 | 455.778 | 154.861 | 455.800 | 154.794
2 | 471.736 | 358.264 | 471.947 | 358.090
3 | 374.000 | 363.583 | 373.839 | 363.730
4 | 478.204 | 501.444 | 478.263 | 501.570
5 | 327.167 | 503.429 | 327.124 | 503.329
6 | 387.903 | 601.097 | 387.768 | 601.140
7 | 481.600 | 677.000 | 481.429 | 676.947
8 | 267.042 | 675.137 | 266.967 | 675.094
9 | 403.000 | 840.905 | 403.168 | 840.768
10 | 292.892 | 811.175 | 292.935 | 811.069
11 | 179.104 | 761.340 | 179.548 | 761.946
12 | 51.852 | 858.571 | 51.845 | 858.545
13 | 384.111 | 299.444 | 384.075 | 299.653
14 | 338.889 | 398.556 | 338.954 | 398.631
15 | 321.444 | 446.444 | 321.520 | 446.285
16 | 265.056 | 586.333 | 265.005 | 586.267
17 | 153.389 | 716.611 | 153.220 | 716.359
18 | 162.944 | 861.944 | 162.700 | 861.915
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Table 10: Measured and calculated image locations, in pixels, for camera at

station 3 for the Boeing dataset (Example 2).

Z
e

Measured

Calculated

T

Y

Lealc

Yealc

O~ O Ot o W DO

el v e e e )
Qo ~J Oy O i W N — O

456.611
471.905
374.000
477.750
327.833
388.000
479.958
269.861
403.000
296.000
185.056
63.179
383.867
338.917
321.611
266.833
158.933
170.681

144.778
359.000
364.345
506.250
507.571
606.738
682.204
680.139
842.329
813.905
765.151
860.000
297.233
399.250
448.611
590.445
720.467
862.755

456.536
472.068
373.749
477.665
327.716
387.969
479.854
269.660
403.149
296.116
185.312
63.179

383.903
338.986
321.843
266.906
158.887
170.500

144.796
358.931
364.338
506.364
507.587
606.672
682.244
680.114
842.443
813.729
765.781
859.858
297.258
399.362
448.401
590.426
720.118
862.758
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Table 11: Camera parameters for the Boeing dataset (example 2). Note that
the RMS errors are given in pixels, while the orientation angles are given in
degrees.

Parameter Station 1 | Station 2 | Station 3
Xc 2056.68 | 2881.36 | 2773.12
Yo 209.00 201.18 197.04
o 1961.96 1763.88 1814.32
W -8.821 -9.476 -9.434
¢ 8.948 -18.402 -14.592
K 88.806 93.089 -24.335
ki 0.163 0.163 0.163
ko -0.435 -0.435 -0.435
ks 0.901 0.901 0.901
P 9.063 E-3 | 9.063 E-3 | 9.063 E-3
D2 0.003 0.003 0.003
a; -5.496 E-3 | -5.496 E-3 | -5.496 E-3
ay 4.362 E-4 | 4.362 E-4 | 4.362 E-4
Tp -3.814 E-3 | -3.814 E-3 | -3.814 E-3
Up 0.031 0.031 0.031
f 0.955 0.955 0.955
z RMS Error 0.124 0.160 0.143
¥ RMS Error 0.191 0.187 0.192




